1 A golf ball is hit at an angle of 60° to the horizontal from a point, O , on level horizontal ground. Its initial speed is $20 \mathrm{~m} \mathrm{~s}^{-1}$. The standard projectile model, in which air resistance is neglected, is used to describe the subsequent motion of the golf ball. At time $t \mathrm{~s}$ the horizontal and vertical components of its displacement from O are denoted by $x \mathrm{~m}$ and $y \mathrm{~m}$.
(i) Write down equations for x and y in terms of t.
(ii) Hence show that the equation of the trajectory is

$$
y=\sqrt{3} x-0.049 x^{2} .
$$

(iii) Find the range of the golf ball.
(iv) A bird is hovering at position $(20,16)$.

Find whether the golf ball passes above it, passes below it or hits it.

2 A football is kicked with speed $31 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 20° to the horizontal. It travels towards the goal which is 50 m away. The height of the crossbar of the goal is 2.44 m .
(i) Does the ball go over the top of the crossbar? Justify your answer.
(ii) State one assumption that you made in answering part (i).

3 Fig. 1 shows the speed-time graph of a runner during part of his training.

Fig. 1
For each of the following statements, say whether it is true or false. If it is false give a brief explanation.
(A) The graph shows that the runner finishes where he started.
(B) The runner's maximum speed is $8 \mathrm{~ms}^{-1}$.
(C) At time 58 seconds, the runner is slowing down at a rate of $1.6 \mathrm{~ms}^{-2}$.
(D) The runner travels 400 m altogether.

4 A pellet is fired vertically upwards at a speed of $11 \mathrm{~m} \mathrm{~s}^{-1}$. Assuming that air resistance may be neglected, calculate the speed at which the pellet hits a ceiling 2.4 m above its point of projection.

5 Fig. 5 shows a block of mass 10 kg at rest on a rough horizontal floor. A light string, at an angle of 30° to the vertical, is attached to the block. The tension in the string is 50 N .

The block is in equilibrium.

Fig. 5
(i) Show all the forces acting on the block. [2]
(ii) Show that the frictional force acting on the block is 25 N .
(iii) Calculate the normal reaction of the floor on the block. [2]
(iv) Calculate the magnitude of the total force the floor is exerting on the block. [2]

6 A small ball is kicked off the edge of a jetty over a calm sea. Air resistance is negligible. Fig. 6 shows

- the point of projection, O ,
- the initial horizontal and vertical components of velocity,
- the point A on the jetty vertically below O and at sea level,
- the height, OA, of the jetty above the sea.

Fig. 6

The time elapsed after the ball is kicked is t seconds.
(i) Find an expression in terms of t for the height of the ball above O at time t. Find also an expression for the horizontal distance of the ball from O at this time.
(ii) Determine how far the ball lands from A .

7 Fig. 4 shows a particle projected over horizontal ground from a point O at ground level. The particle initially has a speed of $32 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle α to the horizontal. The particle is a horizontal distance of 44.8 m from O after 5 seconds. Air resistance should be neglected.

Fig. 4
(i) Write down an expression, in terms of α and t, for the horizontal distance of the particle from O at time t seconds after it is projected.
(ii) Show that $\cos \alpha=0.28$.
(iii) Calculate the greatest height reached by the particle.

